Pages

Rabu, 19 September 2012

Dasar-dasar teori kuantum klasik


Dasar-dasar teori kuantum klasik

2.3 Dasar-dasar teori kuantum klasik
a. Spektrum atom
Bila logam atau senyawanya dipanaskan di pembakar, warna khas logam akan muncul. Ini yang dikenal dengan reaksi nyala. Bila
warna ini dipisahkan dengan prisma, beberapa garis spektra akan muncul, dan panjang gelombang setiap garis khas untuk logamyang digunakan. Pemisahan cahaya yang dihasilkan dengan prisma akan menghasilkan garisspektra garis diskontinyu. Karena panjang gelombang cahaya khas bagi atom, spektrum ini disebut dengan spektrum atom.
Fisikawan Swiss Johann Jakob Balmer (1825-1898) memisahkancahaya yang diemisikan oleh hidrogen bertekanan rendah. Ia mengenali bahwa panjang gelombang λ deretan garis spektra ini dapat dengan akurat diungkapkan dalam persamaan sederhana (1885). Fisikawan Swedia Johannes Robert Rydberg (1854-1919) menemukan bahwa bilangan gelombang σ garis spektra dapat diungkapkan dengan persamaan berikut (1889). 
σ = 1/ λ = R{ (1/ni2 ) -(1/nj2 ) }cm-1
Jumlah gelombang dalam satuan panjang (misalnya, per 1 cm)

b. Teori Bohr
Di akhir abad 19, fisikawan mengalami kesukaran dalam memahami hubungan antara panjang gelombang radiasi dari benda yang dipanaskan dan intesitasnya. Terdapat perbedaan yang besar antara prediksi berdasarkan teori elektromagnetisme dan hasil percobaan.
Berdasarkan hipotesisnya, sistem fisik tidak dapat memiliki energi sembarang tetapi hanya diizinkan pada nilai-nilai tertentu. Dengan radiasi termal, yakni radiasi energi gelombang elektromagnetik dari zat, gelombang elektromagnetik dengan frekuensi ν dari permukaan padatan akan dihasilkan dari suatu osilator yang berosilasi di permukaan padatan pada frekuensi tersebut. Berdasarkan hipotesis Planck, energi osilator ini hanya dapat memiliki nilai diskontinyu sebagaimana diungkapkan dalam persamaan berikut.
ε=nhν(n = 1, 2, 3,….) … (2.2)
n adalah bilangan bulat positif dan h adalah tetapan, 6,626 x 10-34 J s, yang disebut dengan tetapan Planck.

Teori Bohr
  1. Elektron dalam atom diizinkan pada keadaan stasioner tertentu. Setiap keadaan stasioner berkaitan dengan energi tertentu.
  2. Tidak ada energi yang dipancarkan bila elektron berada dalam keadaan stasioner ini. Bila elektron berpindah dari keadaan stasioner berenergi tinggi ke keadaan stasioner berenergi lebih rendah, akan terjadi pemancaran energi. Jumlah energinya, h ν, sama dengan perbedaan energi antara kedua keadaan stasioner tersebut.
  3. Dalam keadaan stasioner manapun, elektron bergerak dalam orbit sirkular sekitar inti.
  4. Elektron diizinkan bergerak dengan suatu momentum sudut yang merupakan kelipatan bilangan bulat h/2π, yakni
mvr = n(h/2π), n = 1, 2, 3,. … (2.3)
Energi elektron yang dimiliki atom hidrogen dapat dihitung dengan menggunakan hipotesis ini. Di mekanika klasik, gaya elektrostatik yang bekerja pada elektron dan gaya sentrifugal yang di asilkan akan saling menyetimbangkan. Jadi,
e2/4πε0r2 = mv2/r … (2.4)
Dalam persamaan 2.3 dan 2.4, e, m dan v adalah muatan, massa dan kecepatan elektron, r adalah jarak antara elektron dan inti, dan ε0 adalah tetapan dielektrik vakum, 8,8542 x 10-2 C2 N-1 m2.


Tidak ada komentar:

Posting Komentar